
RUJIA LI, 1709735, INDIVIDUAL STUDY 2, 2016-2017, SEMESTER 1 1

Exploring technical debt of database
architecture evolution

RuJia Li, Student Member, IEEE

Abstract—Technical debt is trading long-term software quality for short-term benefits. The metaphor has been used to characterize
and quantify issues arising from suboptimal technical software evolution decisions that are not long-term focused. Distributed database
tend to underlie many large scale software. However, their debts are not widely studied. In this paper, we draw on a case study to
analyse the link between technical debts in distributed database architectures and representative architecture evolution decisions. We
use alibaba’s for this purpose.

Index Terms—Technical debt, distributed database,architecture evolution.

F

1 INTRODUCTION

T ECHNICAL debt is a situation in which long-term code
quality is traded for short-term gain [2] . Quick and

poor quality in incepting the architecture may give you
short term gains but can incur long interest-like payment.
This implies that one may need to pay an extra effort in
future development or maintenance. Improving quality can
come with extra cost and effort. We use technical debt to
quantify the value of evolution decisions in database. We
trade developing decisions and their value against payback
strategies

There has been many research aimed at studying techni-
cal debt, some of which are theortical and other are exper-
imental. However, fewer research has used case studies to
evaluate, analyse and model technical debt. In this paper we
use alibaba’s example to explore the relationship between
technical debt and architectures evolution decisions.

The rest of paper is organized as follows: we first briefly
introduce technical debt and alibaba database evolution;
then we explore the deepest driving force of these evolution
from productivity and future usability; in the third section
a dynamic approach was introduced for modelling and
quantifying the technical debt. Lastly, we close the paper
with conclusions and a discussion of future work.

2 OVERVIEW OF TECHNICAL DEBT

Technical debt a concept in programming that reflects the
extra development work that arises when code that is easy
to implement in the short run is used instead of applying
the best overall solution [1]. If technical debt is not repaid,
it can accumulate ’interest’, making it harder to implement
changes later on [3]. Unaddressed technical debt increases
software entropy [4]

• RJ.Li is with School of Computer Science,University of Birmingham,
Birmingham, UK, B15 2TT.
E-mail: rxl635@cs.bham.ac.uk

• R. Bahsoon and P. Hancox are with University of Birmingham.

Manuscript received April 19, 2016; revised August 26, 2016.

3 ALIBABA AND ITS DATABASE ARCHITECTURE
EVOLUTION

Alibaba Group is a global leader in online commerce [5].
Hundreds of millions of users, merchants and businesses
accessed three commercial websites such as Taobao,Tmall
and Alibaba.com.

From the official data, in 2016 the peak daily turnover
is over 12 billion. The peak daily data increment is 200TB
approximately [5]. In the last 15 years,database architecture
of Alibaba has experienced four time changes. Form 2003
to 2004,they used simple MySql clustering. From 2005 to
2010,they used Oracle dataguard. From 2011 to 2015,they
used Self-developed database AliSql. In fact, it is one
branch of MySQL.Currently, they are using Self-developed
database OceanBase. I will describe them briefly.....

3.0.1 stage1 MySQL

Mysql master/slave structure was used in the initial stage
of the alibaba. This architecture enables data transfer from
one master database to one or more slave database servers
automatically, the master database server is responsible for
writing,and the slave database servers is responsible for
reading.

3.0.2 stage2 Oracle

From a security point of view, alibaba’s decision makers
gave up the Mysql database and started to use Oracle in
2005. To protect Oracle data from disasters, data corruptions
and human error,data guard was introduced. Oracle’s data
guard provides the feature of synchronizing data copies.

3.0.3 stage3 AliSQL

Due to the expensive price of Oracle service and the limit
of single machine upgrade,Alibaba decided to research and
development AliSql database. they improved the perfor-
mance and functionality based on Mysql to meet the alibaba
business’s needs.

RUJIA LI, 1709735, INDIVIDUAL STUDY 2, 2016-2017, SEMESTER 1 2

3.0.4 stage4 OceanBase
OceanBase is a distributed and extensible relational
database, It owns many features such as SQL interface, scal-
ability, continuous availability, etc.There have been plenty
of instances in Alibaba and serves tens of billions read and
write transactions every day [7].

4 REASONS OF DATABASE ARCHITECTURE EVO-
LUTION

As with any other artifact produced as part of the software
life cycle [8], database architectures must be modified to
cope with changing requirements. Such requirements can
relate to fixing poor secure design, scaling for data, changes
in robustness requirements etc. In order to adapt to these
requirements, changes may incur interest due to previous
quick and dirty database design decisions. It is possible for
stakeholders to continue paying the interest or abandon the
quick and dirty design. So what determines architecture
evolution? In order to answer this question, architecture
productivity was introduced.

Productivity is determined by the input of an activity
and its output [9]. Therefore to measure architecture pro-
ductivity ,the input and output of architecture must be
measured. Unfortunately, there is no standard output for
architecture, the next simulation experiment is based on
the fact that implementing the same features under the
same quality. For example, supporting 100 thousand concur-
rent transactions, getting the result by calculating different
man/day.

Two scenarios will be supposed. In scenario one, the
stakeholders continue using old database architecture which
have a higher productivity now, but the productivity of
this architecture decreases quickly due to technical debt. in
scenario two, stakeholders decide to apply a new database
architecture for reducing interest in the future. Initially,it
is clear that the cost of scenario two is much higher than
scenario one’s, when achieving the same features because of
reconstruction needs more effort.

TABLE 1: simulation experiment for long-term productivity

Scenario/Time year1 year2 year3 year4 year5

one 30 50 60 90 120
two 120 60 40 35 25

The simulation results are shown in table 1. In first and
second year scenario one have a lower cost in terms of
achieving the same function. However, it increases dramat-
ically because code deteriorates and harder-modify. On the
contrary, the cost of scenario two is very high at first, but
after 5 years it become fewer due to good design and plan.
Even if it is only a hypothesis,we can not proof that this
effect occurs but many of us feel that this explains what we
see architecture qualitatively [9].

These scenarios indicate an trade-off between short-term
and long-term productivity in the architecture development
cycle. Evidently, one of important reasons for database ar-
chitecture evolution is to get a long-term productivity. Also,
another reason is that the expected architecture of database
can not catch up the business trend in the future.

Alibabas history was described for explaining this view.
In 2000, Alibaba has built the first generation database
MySql Culter. Alibaba was expected to run the database for
a long period for about 8 years. In fact, they began to look
for new alternatives in the third years.

As it shown in figure 1, we assume that commercial
development is linear (ideal state). Technical debt affects
the architecture design, increases maintenance cost and
decreases development efficiency, Ultimately, it accelerates
the change of database architecture and made the expected
architecture can not catch up future market trend.

Fig. 1: relationship between evolution time and technical
debt cost

In reality, the situation will be more difficult than men-
tioned, because we can not determine the development
of business. Therefore, as a decision maker, they should
pay more attention to the time factor when designing the
architecture.

In conclusion, the reasons we need to change architec-
ture continually are the poor productivity of future architec-
ture and the inability of the expected architecture to catch
up future market trend.

5 APPROACH OF MODELLING DATABASE ARCHI-
TECTURE EVOLUTION

Based on Tom DeMarcos theory ”You cant control what you
can’t measure.” [10]. When it comes to measure technical
debt software. Many methods for technical debt identifica-
tion, quantification and management have been proposed.
However, most of them are deterministic model and based
on coding debt, which is not suitable for our database
architecture evolution. Database architecture evolution is a
dynamic process, using a static search method is difficult to
get a optimal solutions.

In this part, we put our eye on technical debt of database
architecture evolution and come up a new dynamic analysis
method to evaluate it. Also, we use alibaba’s database
architecture evolution as an example to proof it. The method
contains the following steps:

1) Target determination and decomposition;
2) Map sub-target into database metrics;
3) Dynamic technical debt assessment;
4) Multi-criteria technical debt analysis;

The detail is as follow...

RUJIA LI, 1709735, INDIVIDUAL STUDY 2, 2016-2017, SEMESTER 1 3

5.1 Target determination and decomposition
It is complex to evolve architecture, a careful consideration
is needed before any evolution decision has been made. Like
any other important business decision, at first an appropri-
ate goal must be identified. An appropriate target means
that target can be decomposed. For example, in 2003 with
the development of internet and banking business, Alibaba
group wanted to release the new product Alipay. Alipay is
a third-party online payment platform which highly related
to buyer and the seller’s money. This target cloud spilt into
three parts from the aspect of system level, which includes
better transaction, more secure for data, excellent disaster
recovery function.

Fig. 2: target decomposition of Alipay

5.2 Map sub-target into database metrics
It is difficult to quantify the target, but we can quantify the
system metrics that correspond to the target. As we have
mentioned, each large goal can be broken down into many
specific small targets. Each small target can be mapped to a
different system indicators. How to estimate the distributed
database’s indicators? we give a example as how to estimate
security indicators of alibaba’s four databases . As it shown
in table 2, We use plus ”+” to show this part’s estimated
result,the more plus ”+” it has,the better security indicators
it owns. the final result is weighted average of every part’s
score. It also reflects the different security index for four
different database.

5.3 Dynamic technical debt assessment
As we have mentioned in part two, architectural goals can
be broken down into small achievable goals, each achievable
goal can be mapped to different database indicators. Evalu-
ating the overall technical debt of the architecture evolution
is in fact assessing the technical debt raised by each system
indicator. However, it is difficult to assess each system
indicator’s technical debt due to it is changing all the time.
We defined technical debt of one indicator at point time
as SampleDTVi. Suppose distributed database is static,
SampleDTVi can be calculate easily. However, in the reality,
every moment the technical debt will fluctuate from plenty
of influence factors such as environmental needs, employee
turnover and machine wear. Because of this fluctuation,
any given SampleDTVi value may be atypical. In order to
estimate a typical technical debt, therefore it is natural to
take some sort of average of the SampleDTVi,we maintains
an average, called EstimatedDTV , upon calculate a new

SampleDTVi, we updates EstimatedDTV according to
the following formula:

EstimatedDTVi = (1−µ)∗EstimatedDTVi+µ∗SampleDTVi

EstimatedDTV is a weighted combination of the previous
assessment value of EstimatedDTV and the new assessment
value for SampleDTVi. The recommended value of µ is
defined by the measure frequency and business factors.
Usually, the new SampleDTVi contribution rate is 0.2 due
to minimize the deviation. It means the formula will show
as fellow:

EstimatedDTVi = 0.8∗EstimatedDTVi+0.2∗SampleDTVi

In conclusion, technical debt assessment is a constantly
changing progress,EstimatedDTViis based by previous as-
sessment and current assessment.

5.4 Multi-criteria technical debt analysis

Up to present, we have known what is the expected
database metrics and current database metrics. Also, we
have known how to estimate each database metrics’s tech-
nical debt. The next step is compared to the technical debt
of target database metrics and the current metrics. A multi-
criteria technical debt analysis method was proposed to find
whether it is suitable for evolution for Specified indicator.
We use dynamic technical debt method to calculate the tech-
nical debt of implementing every metric EstimatedDTVi.
It must be point out that each indicator is not isolated.
When it comes technical debt of implementing metric α,
other metrics’s influence must be considered. We propose
every metrics have different factorαi, and the other metrics’s
technical debt is oEstimatedDTVi, so technical debt of a
final metrics EstimatedDTVi calculated as this formula:

EstimatedDTVi = EstimatedDTVi+αi∗oEstimatedDTVi

then,we assess achieving metrics value MetricsV lauei.
And by comparing the EstimatedDTVi and
MetricsV lauei to decide whether suitable for changing
database in terms of this metric. Lastly we make a trade off
between different metric.

Fig. 3: multi-criteria technical debt analysis

RUJIA LI, 1709735, INDIVIDUAL STUDY 2, 2016-2017, SEMESTER 1 4

TABLE 2: distributed database security index

safety assessment index index details stage1:MySql stage2:Oracle stage3:AliSql stage4:OceanBase

security policy

discretionary access control +++ ++++ +++ +++

object reuse ++ +++ ++ +++

labels + +++ +++ +++

mandatory access control ++ +++ +++ ++

accountability
identification and authentication +++ ++++ +++ +++

audit + ++++ +++ ++++

operational assurance

system architecture ++ +++ +++ +++

system integrity + ++++ +++ +++

covert channel analysis ++ ++++ +++ +++

trusted facility management + +++ +++ +++

trusted recovery + ++++ +++ ++++

transaction error rate + +++ +++ +++

life cycle assurance

security testing ++++ ++++ ++++ ++++

design specification and verification ++++ ++++ ++++ ++++

configuration management +++ ++++ +++ ++

trusted distribution ++ ++++ +++ +++

Encryption

key storage + +++ ++ ++

encryption granularity ++ ++++ +++ ++

prevention of information leakage + ++++ +++ +++

detection of unauthorized modifications ++ ++++ ++++ ++

documentation

security features user’s guide ++++ ++++ ++++ ++

trusted facility manual ++++ ++++ ++++ ++++

test documentation ++++ ++++ ++++ ++++

design documentation ++++ ++++ ++++ +++

summary ++ ++++ +++ +++

6 CONCLUSION AND FUTURE WORK

This paper described Alibaba’s four database evolution
stages briefly. Then, we took these evolutions as an example
to explore such problems: the first one is reasons behind
database evolution, during the progress two reason was
found, which is poor productivity of future architecture
and inability of the expected architecture to catch up future
market trend; the second is the approach of modelling
database architecture evolution,we use four steps dynamic
to assess the technical debt which evolution faced, In order
to optimize the decision-making and make profit maximiza-
tion.

Future work is include that to study every metric value
MetricsV lauei in detail,since it is an important factor in
deciding architecture evolution and to find how to make a
trade off of between different metric.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Rami Bahsoonfor his
participation in this study. We also extend our thanks to Dr.
Peter Hancox for his guiding of research skills.

REFERENCES

[1] Techopedia.com. (2016). What is Technical Debt? -
Definition from Techopedia. [online] Available at:
https://www.techopedia.com/definition/27913/technical-debt
[Accessed 9 Dec. 2016].

[2] Persson, A. and Stirna, J. (2015). Advanced Information Systems
Engineering Workshops. In: CAiSE 2015 International Workshops.
p.215.

[3] Tom, E., Aurum, A. and Vidgen, R. (2013). An exploration of
technical debt. Journal of Systems and Software, 86(6), pp.1498-
1516.

[4] En.wikipedia.org. (2016). Technical debt. [online] Available at:
https://en.wikipedia.org/wiki?curid=11885652 [Accessed 9 Dec.
2016].

[5] Alibabagroup.com. (2016). Alibaba Group. [online] Available
at: http://www.alibabagroup.com/en/about/history [Accessed 8
Dec. 2016].

[6] Fowler, M. (2016). bliki: TechnicalDebtQuad-
rant. [online] martinfowler.com. Available at:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
[Accessed 7 Dec. 2016].

[7] Gao, Y., Shim, K., Ding, Z., Jin, P., Zujie, R., Xiao, Y., Liu, A. and
Qiao, S. (2013). Web-Age information management. 1st ed. Berlin:
Springer, p.3.

[8] Horkoff, J., Li, T., Li, F., Salnitri, M., Cardoso, E., Giorgini, P.,
Mylopoulos, J. and Pimentel, J. (2014). Taking goal models down-
stream: A systematic roadmap. In: 2014 IEEE Eighth International
Conference on Research Challenges in Information Science (RCIS).
IEEE.

[9] Fowler, M. (2016). bliki: CannotMeasureProduc-
tivity. [online] martinfowler.com. Available at:
http://martinfowler.com/bliki/CannotMeasureProductivity.html
[Accessed 8 Dec. 2016].

[10] DeMarco, T. (1982). Controlling software projects. Management,
measurement and estimation. 1st ed. New York,N.Y.,Yourdon,1982,:
Prentice Hall;, p.3.

RUJIA LI, 1709735, INDIVIDUAL STUDY 2, 2016-2017, SEMESTER 1 5

RuJia Li received the bachelor degree in com-
puter science from Wuhan University for his re-
search on studying asynchronous non-blocking
Server,In the same year,He got another bach-
elor degree in business management,After that
he went on working in the largest electric com-
pany ”State grid corporation of China ”, Now, he
is studying advanced computer science in Uni-
versity of Birmingham, Birmingham,United King-
dom.He is a oracle certified professional and
student IEEE member .

